
Run II Production Management
Architecture

Mark Breitung, Liz Buckley-Geer, Yen-Chu Chen, Phil DeMar,
Mike Diesburg, Jim Fromm, Krzysztof Genser, Don Holmgren,

Stephan Lammel, Tanya Levshina, Lee Lueking,
Igor Mandrichenko, Heidi Schellman, Marilyn Schweitzer,

Dane Skow, Steve Wolbers, G. P. Yeh

9/24/98

Version 1.0 - DRAFT

Abstract

Production Management for Run II includes effort and software required for the
operation of the off-line production systems. These include the farms, for the event
reconstruction, and the systems which are used to split and prepare the data for the
final physics analysis. In order to make use of these systems there must be software
that schedules and runs “jobs” on the farms and elsewhere, and that ensures that
the data is moved to and from storage systems properly.

This document describes the architecture for Run II Production Management and
will be used as the basis for subsequent software design documents and hardware
configuration analysis.

Fermilab

Fermi National Accelerator Laboratory
Batavia, IL 60510

© 1998 Universities Research Association, Inc.

XXXXX

2 DRAFT - September 24, 1998 Productuin Management Architecture

Production Management Architecture DRAFT - 9/24/98 i

1.0 Introduction..1

2.0 Requirements ...3
2.1 CPU Requirements .. 3

2.2 Overall Architectural Decisions .. 5

3.0 Hardware and Networking Architecture ..6
3.1 RUN II Hardware Model... 6

4.0 Software Architecture ..9
4.1 Overview ... 9

4.2 Software Components ... 10
4.2.1 LSF.. 12
4.2.2 Job Description File (JDF).. 12
4.2.3 External Load Information Manager (ELIM) ... 13
4.2.4 Farms Load Information Manager Daemon (FLIMD) 14
4.2.5 Job Manager (JM) ... 14
4.2.6 Farm Daemon (FARMD).. 15
4.2.7 Farms Data Storage (FDS).. 15
4.2.8 Farms LOGging Daemon (FLOGD)... 16

4.3 Errors and Recovery .. 16
4.3.1 Failure of LSF ... 16
4.3.2 Failure of ELIM .. 16
4.3.3 Failure of FLIMD ... 16
4.3.4 Failure of JM... 17
4.3.5 Failure of FARMD.. 17
4.3.6 Failure of FDS... 17
4.3.7 Failure of FLOGD... 17

4.4 Local Databases... 17
4.4.1 Configuration Files ... 17

4.5 Design Issues... 18

4.6 User and Administrator API.. 18
4.6.1 Job Submission ... 18
4.6.2 Job Monitoring.. 18
4.6.3 Job control tools (KILL) ... 19
4.6.4 System monitoring tools (QUEUES,HOSTS) .. 19

5.0 Administration And Support Issues ...20

ii DRAFT - September 24, 1998 Production Management Architecture

Production Management Architecture DRAFT - 9/24/98 1

1.0 INTRODUCTION

The Run II Production Management project includes the software required for the operation of the
off-line production systems. These include the farms, for the event reconstruction, and the
systems which are used to split and prepare the data for the final physics analysis. In order to
make use of these systems there must be software that schedules and runs “jobs” on the farms and
elsewhere, and that ensures that the data is moved to and from storage systems properly.

To the user, there are clearly issues of job scheduling, HSM and robotics, calibration constants,
accounting and logging, executable version tracking, and other aspects of production systems. All
of the systems must be able to smoothly handle the data as it comes from the experiments and also
reprocessing of data where required. Other uses of the system for test data, special data sets,
Monte Carlo data sets, etc. must also be taken into account.

The scope of the project and its deliverable elements are:
• Proper understanding of the data formats and data flow as part of the production process
• Specification of the input and output of data flow through the Data Access to the Storage

Management Software (SMS.)
• Necessary software to efficiently get/pass data to/from computational processes
• Considerations for error detection and recovery
• Necessary database interfaces in order to update and read from the databases for the

production work
• Batch system or equivalent for scheduling, controlling, monitoring jobs
• Provide Ability to track job history and system usage.
• Ensure availability of development and test environment
• Appropriate documentation for each of the above elements

This project interfaces with, but does not overlap with, the following other Run II projects:
• Reconstruction Farm and Processing Hardware

— Ensure the hardware satisfies our requirements
• Networking Hardware

— Ensure the networking satisfies our requirements. Particularly in relation to SMS. For
example, a single host may require a dedicated network path to SMS which is separate and
non-interfering with interactive access.

• Data Access
— Production Management will provide a general purpose batch system as well as a

specialized batch system for CPU intensive jobs. The latter will be run on traditional sort
of Farm worker host and will not access the SMS directly. The former (among other
purposes) may be used for jobs that retrieve/write data from/to SMS.

— Production Management will provide software to manage local scratch disk.
— Data Access will make requests to retrieve/write data from/to SMS into Farms Scratch

disk and subsequently request analysis.
— Production Management will not directly access CDF/D0 metadata event databases, but

will preclude such access by CDF/D0 jobs.
• Reconstruction Input Pipeline

2 DRAFT - September 24, 1998 Production Management Architecture

— It is assumed that Data Access is an interface between RIP and Production Management.
Should this not be true, Production Management will need to ensure its architecture can
directly interface with RIP.

• Physics Analysis Hardware
— Some Production Management hosts may overlap with Analysis hosts.
— The Production Management batch system (or a separate instance of it) may be used on

Analysis systems. It would be convenient for users if the batch API provided for Analysis
were similar to the one provided for Production Management.

• Support Databases
— Production Management will try to take advantage of the available tools/databases for any

of our database needs
— Production Management will not preclude access to databases for other CDF/D0 needs

• Software Configuration Management
— Production Management must ensure our software fits into this framework

• Storage Management
— Production Management will promote and not preclude efficient access to Storage

Management, though, most likely, Production Management will not directly access
Storage Management through our software.

This document describes several hardware architecture options and the software architecture for
Run II Production Management. It will subsequently be used as the basis for subsequent software
design documents and hardware configuration analyses.

Throughout this document the term “Farm” or “Farms” will be used interchangeably with the
term “Production Management” system.

Production Management Architecture DRAFT - 9/24/98 3

2.0 REQUIREMENTS

The driving force behind the Farms architecture is to provide sufficient CPU capacity for CDF
and D0 reconstruction to keep up with data taking. Extra CPU must also be provided for Monte
Carlo, Stripping and Reprocessing. Estimates of the amount of CPU required are described in
section 2.1. Because these estimates are so large, it is especially important to maximize the CPU
efficiency and keep costs down. Eliminating outmoded and high maintenance technologies and
introducing new cost effective technologies is one way to achieve this. Providing a system that
may be run efficiently 24 hours a day and 7 days a week helps as well.

A Centralized Mass Storage will have a large role overall in Run II and the Farms must pay
particular attention the CDF and D0 data access techniques

Subsequent development and deployment must be completed in time for the following milestones
and their estimated dates:

1st Phase of Farms Purchase Spring, 1999
CDF/D0 Mock Data Challenge Fall, 1999
First Collisions April, 2000

2.1 CPU REQUIREMENTS

The Farms must have sufficient capacity to handle the DC rate for event reconstruction. This
capacity is based on the following estimated MIPs required for reconstruction

where a Fermi MIP is approximately equal to 7 hundredths of a SPECint95 MIP or approximately
3 SPECint92 MIPs.

Element
CDF D0

Min. Max. Min. Max.

Raw Event Size (KBytes) 250 250

Events/Second
Peak Hz 75 50

DC Hz 28 20

MIPs/Event 1200 1800 2000 5000

MIPs to keep
up with DC

100%
efficiency

33,600 50,400 40,000 100,000

73,600 - 150,400

70%
efficiency

48,000 72,000 58,000 143,000

106,000 - 215,000

4 DRAFT - September 24, 1998 Production Management Architecture

Considering other types of processing, the number of MIPs required overall are:

The number of CPUs and Cost may be estimated by making the following assumptions:
• Measurements show that a 200 MHz PC can provide 115 MIPs. Extrapolating this means that

a 400 MHz PC can deliver 230 MIPs and that a 500 MHz PC can deliver 287 MIPs.
• A dual processor 400 MHz PC with 6 GBytes of disk will cost approximately $3200.
• No extra disk will be needed for caching, data files are no more than 1 GByte and at most 2

data files will be needed per processor. Thus, in this estimate, a data disk in addition to the
system disk is assumed to be unnecessary.

• A switch will cost approximated $50,000.

Using the total MIPs considering overlaps in processing types give the scope of the project as:

These estimates will be refined by CDF and D0 over time.

Type of Processing

Estimated MIPs

CDF D0

Min. Max. Min. Max.

Reconstruction for DC at 70% efficiency 48,000 72,000 58,000 143,000

Monte Carlo 10,000 40,000 20,000 40,000

Analysis - -

Reprocessing 24,000 24,000 30,000 70,000

Stripping 10,000 10,000 -

Total
(processing types

overlaps considered)

by year 2000
50,000 70,000 80,000 160,000

130,000 - 230,000

by year 2001
72,000 96,000 110,000 253,000

182,000 - 349,000

Estimated MIPs

Number of Dual
Processor PCs

Cost in $K
(if bought
in 1998)400 MHz 500 MHz

Total
year 2000

CDF 50,000 - 70,000 110 - 150 90 - 125

D0 80,000 - 160,000 175 - 350 140 - 280

CDF+D0 130,000 - 230,000 285 - 500 230 - 405 962 - 1,650

Total
year 2001

CDF 72,000 - 96,000 160 - 210 125 - 170

D0 110,000 - 253,000 240 - 550 195 - 440

CDF+D0 182,000 - 349,000 400 - 760 320 - 610 1,330 - 2,482

Production Management Architecture DRAFT - 9/24/98 5

2.2 OVERALL ARCHITECTURAL DECISIONS

Using PC technologies in the Farms is desirable because:
• of their low cost
• Linux offers more standardization for administrators
• experience at Fermi with PCs to date has been very favorable

However, other types are not ruled out (e.g. SGI, AIX, DEC workstations or SMPs), particularly
for the role of file servers or centralized control systems.

In previous runs, the Farms have relied heavily on locally attached tape drives for I/O. While cost
effective in the past, their are overall a high maintenance item. With the advent of the Centralized
Mass Storage System, it will be more efficient and cost effective to eliminate locally attached tape
drives to farm hosts and go through Mass Storage System for data instead.

To simplify CDF and D0 reconstruction software, files based control software is preferred over
event based software. Thus, Cooperative Processes Software (CPS) will not be used and will no
longer be supported beyond Fixed Target 1999.

Minimize the number of unique batch architectures supported by the Fermi Computing Division.
LSF, a commercial batch system developed by Platform Computing, has been used successfully at
Fermi for several years and my prove beneficial as the core of the Farms Batch System.

The hardware configuration of hosts should consider two types:
• a few with adequate disk, good network access, and act as NFS servers
• many with limited disk, slower network access and act as NFS clients

Hosts should be logically classified into two major sets:
• Job Manager hosts that allow full user access, job submission & central control point for user

jobs
• Execution hosts that are dedicated to computational and/or I/O tasks and allow relatively

restricted interactive user access. Execution hosts may be further divided into two subtypes:
— I/O hosts, suited for I/O-bound batch tasks with relatively large disk space and fast

network access to mass storage and/or site-wide network and
— CPU (worker), hosts with limited disk space, dedicated primarily to CPU-bound tasks

The Farms Batch System architecture itself should not require such division of execution hosts
into types and should be flexible enough to allow different ways of logical division of hosts into
types. Actual configuration of execution hosts will be dictated by hardware capabilities and
volume and nature of computations performed by end users. The Farms Batch System should
allows fast, flexible and non-intrusive fine tuning of its configuration.

6 DRAFT - September 24, 1998 Production Management Architecture

3.0 HARDWARE AND NETWORKING ARCHITECTURE

3.1 RUN II HARDWARE MODEL

A Typical Farm will include:
• One or more Job Manager (JM) hosts. JM hosts will run LSF and allow interactive user

sessions. JM hosts will run approximately 100 - 1000 Job Manager processes depending on
users demand and Farm Batch System configuration. (See “Job Manager (JM)” on page 14 of
the “Software Architecture” section). JM processes are mostly dormant processes, and will
not consume significant amount of system resources, except for virtual memory. JM hosts will
have network connection to all hosts in the cluster. This network connection will be used for
communication between JMs and other components of the Farms Batch System.

• Up to 500 Execution hosts. User processes will run on Execution hosts. The number of
Execution hosts in the cluster will be reversely proportional to performance of individual
computer. Execution hosts could be single or multiprocessor machines.

There are two possible architectures for the Execution hosts:
1) Differentiate each Execution Host as either a CPU host (or Worker host) or an I/O host. From

the Farms Batch System standpoint, these two types of hosts will be different only by type
name and maximum number of processes to run in the same time.
— I/O hosts will be used for I/O-bound user processes and, in the same time, serve as disk

servers for CPU hosts, hosting Farms Data Storage (See “Farms Data Storage (FDS)” on
page 15 of the “Software Architecture” section). FDS will control scratch disk space used
for transferring data to and from the Central Mass Storage System (MSS) and the outside
world. I/O hosts will have fast network connection to MSS. Note that since a JM process
consumes very little system resources (CPU time, network bandwidth), it may run on I/O
host, therefore some I/O hosts may be JM hosts in the same time. Approximately 10% of
all Execution hosts will be I/O hosts.

— CPU-bound user processes will be running on CPU hosts and approximately 90% of all
Execution hosts will be CPU hosts. Depending on the CPU host’s performance
characteristics, it will be configured to run one or more user processes in the same time.
Also, CPU hosts will have network connection to each other to enable IPC between
cooperating user processes. There are several possible ways in which user processes will
be able to access data stored on I/O hosts:

A) “directly” through NFS
B) using FIO/RFIO package (an I/O library that allows to read/write via TCP/IP)
C) downloading data to local disk and uploading data back via rcp or other tools

In cases A) and B) CPU hosts have only small amount of local disk space to accommodate
I/O needs of CPU-bound processes running on the host. The majority of cluster disk space
resources are physically attached to some number of I/O hosts. Each I/O host works as a
NFS server for CPU hosts and all other I/O hosts. In this case FDS can be used to manage
centralized disk space resources. In case C) each CPU host must have enough local disk
space to accommodate input and output files for maximum number of processes allowed
to run in the same time on the host. Current estimate of disk space needed is 4 GBytes per
process. Configuration C) with the local disk on worker hosts will have better I/O

Production Management Architecture DRAFT - 9/24/98 7

performance then A), will not required additional programming that will be necessary in
configuration B), but will increase the complexity of over all job control, additional cost of
disk and will require additional effort from administrators or users to manage local disk
space.

There are several advantages to this approach:
— Easily optimize access to MSS
— Relatively few fast network connections to MSS
— Optimal CPU utilization
— Centralized disk space management is possible

The only apparent disadvantage is that additional data transfer between I/O and CPU host is
required.

This architecture is shown in FIGURE 1.

FIGURE 1. Execution hosts differentiated as I/O versus CPU hosts

2) No differentiation between I/O and CPU hosts. In this architecture, all disk space is distributed
across hosts and is used not only for storing input and output data of running processes, but
also for long-term data storage and (pre)staging. Each host will manage its own disk space and
will access MSS on its own. FDS in this case seems to be unnecessary. Current estimate of
disk space needed per host is the sum of:
— 2 GBytes for each input file being read by active analysis jobs
— 2 Gbytes for each output file being written by active analysis jobs
— 2 Gbytes for each input file being written by input staging jobs
— 2 Gbytes for each input file being written by output staging jobs.

Thus, 12 Gbytes would be required on a 2 processor host with one input staging jobs, one
output staging job and 2 analysis jobs.

Catalyst 5500 Switch
Fast Ethernet

Fast Ethernet
...

 CPU Hosts

I/O Host

Central Mass Storage System

Job Submission HostI/O Host

Fast network

...

Site-wide and
global network

8 DRAFT - September 24, 1998 Production Management Architecture

This configuration eliminates extra data transfer within the cluster and the dependency of CPU
hosts on I/O hosts, but it has several essential drawbacks:
— Inefficient CPU utilization
— Drastic increase in number of network connections to MSS
— Users have to provide the mechanism to manage local disk space
— Additional effort will be required to optimize access to MSS
— Problem identification and system monitoring become more difficult

This architecture is shown in FIGURE 2.

FIGURE 2. Execution hosts with no differentiation as I/O versus CPU hosts

Catalyst 5500 Switch
Fast Ethernet

...

 Execution Hosts

Central Mass Storage System

Job Submission Host

Fast network Site-wide and
global network

Production Management Architecture DRAFT - 9/24/98 9

4.0 SOFTWARE ARCHITECTURE

4.1 OVERVIEW

The major software element of the Run II Production Management software is a batch system that
works in concert with the Run II CDF and D0 Data Access Methods. The Farm Batch System will
provide:
• Job Control for software

— queue users job
— dispatch user process(es) for execution to Execution hosts
— report job/process status to user
— coordinate job steps (sections) execution
— notify user when execution steps are complete

• Resource Management
— host status
— buffer/scratch disk status
— authorized users
— number of allowable executables per host

• Management Tools
— job submission/cancellation
— job hold/release
— job monitoring
— job history & statistics
— farm shutdown/start-up

Assuming the above, FIGURE 3. graphically illustrates this:

FIGURE 3. The Farm Batch System in a generic production context

Job: A user job which specifies one or more CPU intensive tasks and/or I/O

Exec: A CPU intensive executable or an I/O intensive executable

Farm Batch
I/O and/or

Job Manager
hosts

CPU hosts

tasks to be remotely executed.

... Exec ... Exec Exec ... Exec Exec ... Exec

... Job ... Job
 Job

 Exec

System

Job Manager
and/or I/O hosts

10 DRAFT - September 24, 1998 Production Management Architecture

4.2 SOFTWARE COMPONENTS

The Farm Batch System (See FIGURE 4.) will be composed of the following software elements:
• LSF for high level batch control on Job Manager hosts including ELIM interface

specification for specific Farm load indices. (For convenience, non-farm production jobs may
use the same LSF batch cluster, though such jobs will not have access to Execution hosts.)

• Farm Load Information Manager Daemon (FLIMD) for central management of all execution
hosts

• Job Manager (JM) to control and monitor a particular section of Farm job on a given Job
Manager host

• Farm Daemon (FARMD) to start, monitor and control user processes on a particular
execution host

• Farms Data Storage (FDS)- a scratch disk space manager to be used as a data buffer between
the system, mass storage and the rest of the world

• API for job submission, monitoring, status, history, administration, etc...
• Configuration file for farm configuration
• Farms Logging Daemon (FLOGD) to log all error and output messages in a single directory

Farm production jobs will be described by a Job Description File (JDF), which will consist of one
or more Job Sections. A job will be submitted with the farms submit command. This command
will invoke a LSF bsub command for each Job Section and specify the JM as the executable. The
only argument to the farms submit command is the file name of the Job Description File (JDF).
See “Job Description File (JDF)” on page 12 for more information on JDF and Job Sections.

Production Management Architecture DRAFT - 9/24/98 11

FIGURE 4. Farm Batch System Components

LSF Queues

JDF
Job
Submissio
n program

LSF

ELIM
ELIM

FLIMDFDS

JM

FARMD FARMD

JM

FARMD

User
process

User
process

User
process

User
process

User
process

JM Host

CPU host CPU host

I/O host

JSF

JSF

Creates one or more Job
Section Files (JSF)

I/O bound
section

CPU bound section

Allocates/de-allocates
Execution hosts and FDS quota

Report resource availability to LSF

Sections start as soon as
requested resources
become available

Submits each section as LSF job

JM contacts FARMD to
start user process(es)

12 DRAFT - September 24, 1998 Production Management Architecture

4.2.1 LSF

LSF is a commercial batch package. It will provide the following:
• Job submission and monitoring
• Job completion status reporting
• Job log file handling and delivery back to user
• Job cancellation
• Job queue management

LSF will use an ELIM (See Section 4.2.3 on page 13) as the interface to the FLIMD
(Section 4.2.4 on page 14) to gather execution host and FDS disk space availability information.
Based on this information and job queue scheduling parameters, LSF will start Job Manager
processes (See Section 4.2.5 on page 14). LSF is used as a mechanism to start JM processes, but
does not directly start user processes. User processes running on the farm are completely out of
the control of the LSF system. Users do not need to be aware that LSF is being used. A set of API
commands will be supplied that completely hides LSF from the user.

A queue level pre-exec command will run on each queue that will define environment variables
that will provide the JM with the following:
• Host type
• CPU time limit
• Real time limit
• User/group permissions to use the queue

4.2.2 Job Description File (JDF)

This file contains all information needed by the Farm Batch System to submit a user’s job. The
path of the file is supplied to the farms submit command. The JDF file consists of one or more Job
Sections. Each Job Section has a unique label. Users will be able to specify dependencies between
sections (see the example below). LSF will be used to implement inter-section dependencies.
Each Job Section has the following types of information:
• LSF queue to submit the job to
• User program pathname and arguments
• Number of processes to run in parallel.(1 by default)
• A flag indicating whether the job and all user processes should be cancelled if one user

process dies. If the flag is set, then the death of one user process will not cause the entire set of
user processes to be cancelled. The default action is to cancel all user processes for a section if
one dies.

• FDS quota to reserve for this section (0 by default)
• Dependencies on other sections (none by default)
• What directory to put the stdout and stderr of each user process

A Job Section is an atomic element of a job. Each section is executed on one or more hosts of the
same type. Each process of the section executes the same executable (most likely, UNIX shell
script) and is provided with the same set of user parameters. Using dependencies between
sections, user may establish (primitive) synchronization between sections. Section completion

Production Management Architecture DRAFT - 9/24/98 13

code, determined by exit codes of individual processes, maybe used to specify conditions which
are necessary to start next section.

A job submission program (see below) will process and validate JDF, create a Job Section File for
each section and submit one LSF job per section.

An example of JDF (note that actual syntax may change) is:
SECTION input # section label

EXEC = /user/dump -vsn XY123 # program and arguments
QUOTA = 8G # FDS quota to reserve
QUEUE = IO # queue to submit to

no dependencies for this section
SECTION processing # second section

QUEUE = CPU_120min # queue to submit to
QUOTA = 4G # FDS quota to reserve
N =2 # 2 processes to run
NEED = 0 # If one dies - proceed
EXEC = /usr/user/myjob -vsn XY123 # program and arguments
DEPEND = done(input) # Start this section when input is done
STDOUT = /usr/home/job_out # Where to put processes stdout.
STDERR = /usr/home/job_err # Put stderr in job_err

In this example, section “input” runs on an I/O host and dumps a tape with VSN XY123 to disk. It
requests 8 GByte of FDS quota for that. Let’s assume that it produces 2 files and puts them to
well known location identified by VSN (e.g. /scratch/XY123/file1 and file2). Section
“processing” will not start until
• section “input” finished successfully due to DEPEND clause (done(input)) and
• there are at least 2 free CPU hosts in the cluster
• there is at least 4 GByte FDS quota available for each of them

When section “processing” starts, two user processes start on Execution hosts in the same time
and each of them processes one of files produced by previous section. Each of those two processes
will be given the number of the process within the job. One process will get number 1 and the
other - number 2. This way each of them will know which file (file1 or file2) to process. Similarly,
stdout and stderr files will be uniquely named within the specified directory.

Job submission may be done on any Job Manager host. There is nothing that precludes that LSF
on such hosts cannot be used for non-farm jobs. For example, users may be able to submit
standard LSF jobs for daily user area maintenance. However, such jobs will not have access to
execution hosts and will run on JM hosts.

4.2.3 External Load Information Manager (ELIM)

From LSF standpoint, an ELIM is supplied by user as a module which monitors user-defined
load parameters. For the Farms Batch System, there is an ELIM process to contact the FLIMD
requesting the number of available hosts in the Farm Batch System, and from FDS, the ELIM
receives information on disk space.

14 DRAFT - September 24, 1998 Production Management Architecture

4.2.4 Farms Load Information Manager Daemon (FLIMD)

The FLIMD process monitors Execution host availability and status information making it
available to LSF (through the ELIM), to users and to cluster administrators. Host status is
maintained in real-time. The FLIMD configuration file will have one entry per execution host
(see Section 4.4.1 on page 17)

The type of information kept in memory will be:
• list of LSF job ids for JMs which have user processes running on the host
• time of last seen heart-beat message from each FARMD
• host status (up or down)

Based on Execution host availability information, LSF will start JM processes, when requested
resources (given number of Execution hosts of given type) become available. When it starts, the
JM will contact the FLIMD and allocate 1 or more hosts of certain type. When user job finishes,
the JM will de-allocate the resources. If the JM terminates before releasing the resources, the
FLIMD will detect that and deallocate the resources automatically. The JM may detect that
certain Execution hosts are is unavailable and notify the FLIMD. The FLIMD will listen to
“heartbeat” messages from FARMD processes (See Section 4.2.6 on page 15) and use them to
update host status. The FLIMD will read its configuration file, which will be used to specify
maximum number of processes to run on each Execution host and host type. There will be one
and only one FLIMD running per cluster at any time.

The FLIMD maintains open TCP stream connection to all running JMs. When the FLIMD
starts, it waits for some time for all existing JMs to reestablish connections and to send updated
information on Execution host usage. Information collected this way, heart beat messages from
FARMD’s and a static FLIMD configuration file are all sources of information FLIMD needs to
start. This allows the Farms Batch System to be robust with respect to FLIMD failure.

4.2.5 Job Manager (JM)

A JM process will be started by LSF and will be run as a user process. There will be one JM per
Job Section in a JDF file. The JM will receive from LSF all information that is necessary to start
user processes (e.g. Job Id, user’s program name and arguments, number of processes to run, etc.)

On start, the JM will contact the FLIMD to allocate given number of hosts of a certain type.
After receiving list of allocated hosts, the JM will contact FARMD processes on specified hosts
and pass process related information such as job name, user id, user’s program name with
arguments etc.

A JM process stays in existence until all user processes have finished successfully or one of the
following has happened:
• The FLIMD could not allocate the necessary amounts of hosts
• user cancels the job
• A FARMD process died or host became unavailable
• one of user process exit with non-zero code

A JM will also perform the following actions:
• in case of lost connection with the FLIMD periodically tries to reestablish connection and

Production Management Architecture DRAFT - 9/24/98 15

update the FLIMD with current information (list of hosts where user processes are running)
• notify the FLIMD in case when a FARMD on certain host is not available
• notify the FLIMD when an allocated host is not needed and could be released
• notify a FARMD in case of job cancellation
• produce a job log file

A JM will exit with zero exit code only in case when all user processes have been finished
successfully, otherwise the exit code will be equal to 1.

4.2.6 Farm Daemon (FARMD)

The FARMD is essentially a Farms Batch System agent running on every Execution host. There
will be one FARMD running per host. Responsibilities of the FARMD include:
• Accept connections from JMs
• Keep connection to each JM open until the JM disconnects or last user process finishes
• Start user processes as requested by the JM
• Pass the number of cooperative processes, the number of the process in the job (1,2,3, and so

on) and the LSF job number in UNIX environment variables to user process
• Store user process’ standard output and error files on disk
• Enforce CPU and day time limits
• Notify the JM when a user process exits
• Terminate user processes if requested by a JM
• Provide status and statistical information about user processes
• Periodically send heart-beat messages to the FLIMD to update the host status information

The FARMD will be running with root privileges.

4.2.7 Farms Data Storage (FDS)

FDS is the Farms Disk Space manager for scratch and staging disk space. It will be responsible
for:
• Distribution of user data across scratch disk space. FDS will manage one or more UNIX file

systems physically attached to one or more computers. Those computers may or may not be
included in Batch System. FDS will place user data based on space availability and user (or
group) disk space quota, if any;

• Reporting disk space availability to LSF to allow user jobs to specify their requirements for
scratch disk space and wait in LSF queue until those are satisfied;

• FDS will be responsible for cleaning unused data from disk based on user-defined parameters
such as time of last access to the file, file and/or project life time.

FDS will maintain virtual file system database, which will be used as a namespace, similar to the
one provided by FMSS and ENSTORE. All scratch disk space will be logically divided between
groups and/or individual users by quota mechanism. Further, parts of user or group disk space will
be divided into “projects”, which will correspond to Farms Batch System jobs or groups of jobs.
User interface to FDS will include operations like:
• Uploading/downloading a file to/from FDS

16 DRAFT - September 24, 1998 Production Management Architecture

• Reserving/unreserving disk space for future use by a project
• Querying disk utilization statistics
• Translation of virtual file name into physical one. This feature may be useful in cases when

data is in fact stored on local or NFS accessible physical disk
• Also, it may include “direct” data access through FIO-like package

4.2.8 Farms LOGging Daemon (FLOGD)

The FLOGD is a daemon that receives, confirms, and logs messages from all components of
Farm Batch System. UDP protocol will be used for the FLOGD communication to reduce
consumption of system resources.

4.3 ERRORS AND RECOVERY

Careful consideration has been given to various scenarios of failure of each Farms Batch System
component. The goal is to minimize impact of such failures on user jobs and overall system
performance. A cron job will run periodically to parse the log file. If errors are found in the log
file, the cron job will automatically notify appropriate personnel (e.g. via email)

4.3.1 Failure of LSF

If LSF terminates or has to be restarted, FLIMD, FDS, JMs, FARMDs and user processes will
continue to run. LSF failure will result in:
• Users will not be able to submit new jobs
• Users will not be able to check current status of their jobs
• Users will not be able to cancel their jobs

When LSF restarts, it will learn about available resources and recover. No user jobs will be
terminated because of LSF failure. Certain LSF administrative actions, such as closing an LSF
host, can cause suspension of the JM process. The effect of this on the user processes (which are
running outside of LSF’s control) has yet to be determined. One option is to suspend these
processes as well.

4.3.2 Failure of ELIM

In case of ELIM failure, jobs will be held in LSF queues until the ELIM restarts (approximately
90 seconds.)

4.3.3 Failure of FLIMD

FLIMD/JM and FARMD/FLIMD communication protocols are designed so that the FLIMD,
when it restarts after a failure, receives all necessary job status, Execution host status and
availability information from JMs and FARMDs. For the time when the FLIMD is not running:
• New Job Manager processes will wait until FLIMD starts
• The ELIM will report that no hosts are available, preventing LSF from starting new jobs
• The JMs of jobs which are already running will try to reestablish connection to the FLIMD,

Production Management Architecture DRAFT - 9/24/98 17

and when it comes back up, update the FLIMD with their current status
• If a job finishes before the FLIMD restarts, the JM exits.
• FARMDs continue sending heartbeat messages to the FLIMD. Connection-less UDP

protocol will be used for this.

This algorithm allows FLIMD failure and recovery to have very little impact on users.

4.3.4 Failure of JM

If a JM terminates unexpectedly, all FARMDs it had a connection to gracefully terminate user
processes by sending SIGUSR1 signal first, and after some (configurable) period of time (e.g. 10
minutes) send SIGKILL signal. The FLIMD considers all hosts allocated by the failed JM as
available after the grace period of time elapsed since the JM disconnection. In other words,
failure of a JM causes graceful job section termination and may cause dependent sections not to
start.

4.3.5 Failure of FARMD

When a FARMD terminates unexpectedly, one or more JMs which have user processes running
on corresponding execution host detect that immediately as network connections to FARMD
break. These JMs notify the FLIMD that this Execution host is unavailable and, if user
requested, may gracefully terminate all other user processes, or may allow them to continue
execution. When the FARMD comes back up, it sends heartbeat message to the FLIMD, making
itself available to run user processes.

4.3.6 Failure of FDS

In case of FDS failure, all processes in phase of downloading or uploading of data will fail. LSF
will hold all jobs requesting some FDS disk space as resource. Processes which have downloaded
their data onto local disk on a CPU host or those accessing data directly or through NFS will
continue to run. Processes which have finished their computations and attempting to upload data
back into FDS will block until FDS recovers.

4.3.7 Failure of FLOGD

If the FLOGD happens to terminate, each component of the Farms Batch System (e.g. FARMD,
JMs, FLIMD, FDS) would hold up to 10 messages in their perspective queues. When the
FLOGD has been restarted, these messages would be sent to the FLOGD at that time to be
logged.

4.4 LOCAL DATABASES

4.4.1 Configuration Files

Each component of Farms Batch System reads from a farm configuration file. This file will be
stored on a disk which is NFS mounted at all the Farm Batch System hosts. Location of
configuration file will be defined in FUE UPS setup scripts by an environment variable.

18 DRAFT - September 24, 1998 Production Management Architecture

The FLIMD has its own configuration file which defines the cluster configuration. This file will
have the following type of information about each Execution host:
• Host name;
• Host types it belongs to. A host may belong to more than one type;
• Maximum number of user processes to run on the host per type (e.g. 2 WorkerTypeA and 2

WorkerTypeB on the same host)

4.5 DESIGN ISSUES

Most software will be written in a high level scripting language such as PYTHON.

4.6 USER AND ADMINISTRATOR API

The API will provide both a command line and GUI interface. All functionality will be
implemented in the command line interface. The API consists of the following types of
commands:
• Job Submission Program (SUBMIT)
• Job/process status monitoring tools (STATUS)
• Job control tools (KILL)
• System monitoring tools (QUEUES,HOSTS)
• Job history, viewing log files.

All command are issued using the farms command:

farms [API Command] [args]

The following subsections provide examples to show the proposed functionality of several of
these commands.

4.6.1 Job Submission

Job submission is done using the farms submit command. The user supplies a JDF file as an
argument to submit the job. The following example submits a job whose JDF file is located in the
users home area under a file called myjob.jdf:

> farms submit ~/myjob.jdf
Farm Job < 4548 > has been submitted ...

This will submit an LSF job that dispatches a JM process. The JDF file contains information that
will be used to determine what executable to run, what type of hosts to use, how many parallel
processes to run, etc...

After the job has been submitted, a farm job id will be printed to stdout. This job id can be used to
monitor or cancel a farm job.

4.6.2 Job Monitoring

Farm jobs can be monitored by using the farms status command. The command can look at
jobs for a particular user, and individual job, or all farm jobs running on the system. The following

Production Management Architecture DRAFT - 9/24/98 19

example shows all jobs in the batch system by user fromm:

> farms status -u fromm
Farm Jobid: 4548

 Step Name: one
 Host: fnpc24.fnal.gov

 Process Number: 2
 PID CPU ACPU CMD
 2658 0 0 sh /home/fromm/sleep_well.exe
 2659 0 0 sleep 1000

 Process Number: 1
 PID CPU ACPU CMD
 2656 0 0 sh /home/fromm/sleep_well.exe
 2657 0 0 sleep 1000

 Step Name: two
 Pending: Job dependency condition not satisfied;

 Step Name: three
 Pending: Job dependency condition not satisfied;

4.6.3 Job control tools (KILL)

Farm jobs can be cancelled using the farms kill command. This will kill all processes that are
running under a particular farm id. The following command kills the job that was submitted in the
previous section:

> farms kill 4548
Farm job < 4548 > being killed...

4.6.4 System monitoring tools (QUEUES,HOSTS)

These commands will supply information on the currently configured hosts and queues in the
system.

20 DRAFT - September 24, 1998 Production Management Architecture

5.0 ADMINISTRATION AND SUPPORT ISSUES

The following items must be installed to run the Farm Batch System.
• Python (or other scripting language if used)
• LSF on all JM hosts
• Products area NFS mounted to all Execution hosts.
• On each Exection host, a FARMD scratch area directory must be created. This directory can

be found in $FARMS_ROOT/config/farms.cfg.
• The FLIMD configuration file must be accessible on the the FLIMD host. The location is

determined when the FLIMD is started.
• On the FLOGD host, a log directory must be created. This directory can be found in

$FARMS_ROOT/config/farms.cfg.

